SUBSCRIBE NOW
avatar
I always learn something just by skimming it that makes me want to bookmark the issue now and dig deeper later
SUBSCRIBE NOW
avatar
Keep up the good work with the newsletter 💪 I really enjoy it
SUBSCRIBE NOW
avatar
Dispatch is a must read for Android devs today and my go-to for keeping up with all things Jetpack Compose
SUBSCRIBE NOW
avatar
Dispatch has been my go-to resource as it's packed with useful information while being fun at the same time
SUBSCRIBE NOW
avatar
The content is light, fun, and still useful. I especially appreciate the small tips that are in each issue
SUBSCRIBE NOW
avatar
I truly love this newsletter ❤️‍🔥 Spot on content and I know there's a lot of effort that goes behind it
SUBSCRIBE NOW
avatar
Thanks for taking the time and energy to do it so well
JetpackCompose.app's Newsletter
avatar
I always learn something just by skimming it that makes me want to bookmark the issue now and dig deeper later
JetpackCompose.app's Newsletter
avatar
Keep up the good work with the newsletter 💪 I really enjoy it
JetpackCompose.app's Newsletter
avatar
Dispatch is a must read for Android devs today and my go-to for keeping up with all things Jetpack Compose
JetpackCompose.app's Newsletter
avatar
Dispatch has been my go-to resource as it's packed with useful information while being fun at the same time
JetpackCompose.app's Newsletter
avatar
The content is light, fun, and still useful. I especially appreciate the small tips that are in each issue
JetpackCompose.app's Newsletter
avatar
I truly love this newsletter ❤️‍🔥 Spot on content and I know there's a lot of effort that goes behind it
JetpackCompose.app's Newsletter
avatar
Thanks for taking the time and energy to do it so well

Compare Declarative Frameworks

Choose up-to 3 frameworks and learn how they compare to each other.
Framework Logo
Framework Logo
Framework Logo
Framework Logo
Framework Logo
Creating a new Component
Components are the reusable building blocks of your application. They are the most basic UI elements and can be used to build more complex components.
React
jsx
function MyComponent(props) {
  return <div>{props.displayString}</div>;
}
SwiftUI
swift
struct MyComponent: View {
    var displayString: String
    var body: some View {
        Text(displayString)
    }
}
Jetpack Compose
kotlin
@Composable
fun MyComponent(
    displayString: String
) {
    Text(displayString)
}
Conditional Rendering
Conditional rendering is a technique used to display different UI components or content based on certain conditions, such as the value of a variable or the outcome of a boolean expression.
React
jsx
function ConditionalComponent({ condition }) {
  return (
    <>
      {condition ? (
        <p>Condition is true</p>
      ) : (
        <p>Condition is false</p>
      )}
    </>
  );
}

// Usage
<ConditionalComponent condition={true} />;
SwiftUI
swift
struct ConditionalComponent: View {
    let condition: Bool

    var body: some View {
        Group {
            if condition {
                Text("Condition is true")
            } else {
                Text("Condition is false")
            }
        }
    }
}

// Usage
ConditionalComponent(condition: true)
Jetpack Compose
kotlin
@Composable
fun ConditionalComponent(condition: Boolean) {
    if (condition) {
        Text("Condition is true")
    } else {
        Text("Condition is false")
    }
}

// Usage
ConditionalComponent(condition = true)
Prop/Parameter Drilling
Prop/Parameter drilling is a technique where data is passed through multiple layers of components in the component hierarchy, often from a parent component to a deeply nested child component, via props or parameters.
React
jsx
function Parent({ data }) {
  return <IntermediateComponent data={data} />;
}

function IntermediateComponent({ data }) {
  return <ChildComponent data={data} />;
}

function ChildComponent({ data }) {
  return <p>Received data: {data}</p>;
}

// Usage
<Parent data="Some data" />;
SwiftUI
swift
struct Parent: View {
    let data: String

    var body: some View {
        IntermediateComponent(data: data)
    }
}

struct IntermediateComponent: View {
    let data: String

    var body: some View {
        ChildComponent(data: data)
    }
}

struct ChildComponent: View {
    let data: String

    var body: some View {
        Text("Received data: \(data)")
    }
}

// Usage
Parent(data: "Some data")
Jetpack Compose
kotlin
@Composable
fun Parent(data: String) {
    IntermediateComponent(data = data)
}

@Composable
fun IntermediateComponent(data: String) {
    ChildComponent(data = data)
}

@Composable
fun ChildComponent(data: String) {
    Text("Received data: $data")
}

// Usage
Parent(data = "Some data")
Responding to events
Responding to events involves handling user interactions, such as button clicks or text input changes, and updating the component's state or triggering side effects accordingly.
React
jsx
import { useState } from "react";

function ClickableComponent() {
  const [clicked, setClicked] = useState(false);

  return (
    <button onClick={() => setClicked(true)}>
      {clicked ? "Button clicked" : "Click me"}
    </button>
  );
}
SwiftUI
swift
struct ClickableComponent: View {
    @State private var clicked = false

    var body: some View {
        Button(action: {
            clicked = true
        }) {
            Text(clicked ? "Button clicked" : "Click me")
        }
    }
}
Jetpack Compose
kotlin
@Composable
fun ClickableComponent() {
    var clicked by remember { mutableStateOf(false) }

    Button(onClick = { clicked = true }) {
        Text(if (clicked) "Button clicked" else "Click me")
    }
}
Handing user input
Handling user input involves capturing and processing user interactions with input fields, such as text fields, sliders, or checkboxes, and updating the component's state or triggering side effects based on the input.
React
jsx
function TextInputComponent() {
  const [text, setText] = useState("");

  return (
    <input
      type="text"
      value={text}
      onChange={(e) => setText(e.target.value)}
      placeholder="Enter text"
    />
  );
}
SwiftUI
swift
struct TextInputComponent: View {
    @State private var text = ""

    var body: some View {
        TextField("Enter text", text: $text)
    }
}
Jetpack Compose
kotlin
@Composable
fun TextInputComponent() {
    var text by remember { mutableStateOf("") }

    TextField(
        value = text,
        onValueChange = { newText -> text = newText },
        label = { Text("Enter text") }
    )
}
Previewing a Component
Creating a preview of a component involves displaying a visual representation of the component in the development environment to help with the design and layout process.
React

React doesn't have a built-in preview feature. However, you can use a tool like Storybook to create previews for your components in a separate development environment.

SwiftUI
swift
struct ExampleComponent: View {
    var body: some View {
        Text("Hello, World!")
    }
}

struct ExampleComponent_Previews: PreviewProvider {
    static var previews: some View {
        ExampleComponent()
    }
}
Jetpack Compose
kotlin
@Composable
fun ExampleComponent() {
    Text("Hello, World!")
}

@Preview(showBackground = true)
@Composable
fun ExampleComponentPreview() {
    ExampleComponent()
}

Additionally, you can also use Showkase, an open source library by Airbnb that allows you to view themes preview functions in an auto-generated component browser that can be viewed on an Android device.

Lists & Looping
Lists and looping involve rendering a dynamic number of components based on the length of a list or array, iterating over the list, and generating a UI component for each item.
React
jsx
function ListComponent({ items }) {
  return (
    <ul>
      {items.map((item) => (
        <li key={item}>{item}</li>
      ))}
    </ul>
  );
}

// Usage
const items = ["Item 1", "Item 2", "Item 3"];
<ListComponent items={items} />;
SwiftUI
swift
struct ListComponent: View {
    let items: [String]

    var body: some View {
        List(items, id: \.self) { item in
            Text(item)
        }
    }
}

// Usage
let items = ["Item 1", "Item 2", "Item 3"]
ListComponent(items: items)
Jetpack Compose
kotlin
@Composable
fun ListComponent(items: List<String>) {
    LazyColumn {
        items(items) { item ->
            Text(item)
        }
    }
}

// Usage
val items = listOf("Item 1", "Item 2", "Item 3")
ListComponent(items = items)
List item keys
List Item Keys are unique identifiers assigned to each list item in declarative UI frameworks to help manage and update list elements efficiently. Using List Item Keys enables the framework to optimize the rendering process, minimizing unnecessary updates and improving overall performance.
React
jsx
function ItemKeysExample({ items }) {
  return (
    <ul>
      {items.map((person) => (
        <li key={person.id}>
          Name: {person.name}, Age: {person.age}
        </li>
      ))}
    </ul>
  );
}

// Usage
<ItemKeysExample
  items={[
    { name: "John", age: 30, id: "1" },
    { name: "Jane", age: 28, id: "2" },
    { name: "Bob", age: 25, id: "3" },
  ]}
/>;
SwiftUI
swift
struct Person: Identifiable {
    let name: String
    let age: Int
    let id: String
}

struct ItemKeysExample: View {
    let items: [Person]

    var body: some View {
        List(items) { person in
            Text("Name: \(person.name), Age: \(person.age)")
        }
    }
}

// Usage
ItemKeysExample(items: [Person(name: "John", age: 30, id: "1"), Person(name: "Jane", age: 28, id: "2"), Person(name: "Bob", age: 25, id: "3")])
Jetpack Compose
kotlin
data class Person(val name: String, val age: Int, val id: String)

@Composable
fun ItemKeysExample(items: List<Person>) {
    LazyColumn {
        items(items, key = { person -> person.id }) { person ->
            Text("Name: ${person.name}, Age: ${person.age}")
        }
    }
}
Slot APIs
Slot APIs refer to a technique where components have customizable parts or 'slots' that can be filled with content when the component is being used. This allows for greater reusability and flexibility in composing user interfaces. The content that fills these slots can be other components or simple UI elements like text or images.
React
jsx
function Parent({ header, content }) {
  return (
    <div>
      {header}
      {content}
    </div>
  );
}

// Usage
<Parent header={<h1>Header</h1>} content={<Child />} />;

function Child() {
  return <p>Child Content</p>;
}
SwiftUI
swift
struct Parent<Header: View, Content: View>: View {
    let header: Header
    let content: Content

    var body: some View {
        VStack {
            header
            content
        }
    }
}

// Usage
Parent(
    header: Text("Header"),
    content: Child()
)

struct Child: View {
    var body: some View {
        Text("Child Content")
    }
}
Jetpack Compose
kotlin
@Composable
fun Parent(
    header: @Composable () -> Unit,
    content: @Composable () -> Unit
) {
    Column {
        header()
        content()
    }
}

// Usage
Parent(
    header = { Text("Header") },
    content = { Child() }
)

@Composable
fun Child() {
    Text("Child Content")
}
Modifiers
Modifiers are used to adjust or configure the UI elements' appearance or behavior in a declarative UI framework.
React

React doesn't have a direct analog to modifiers in Jetpack Compose or SwiftUI. Instead, you can use inline styles or CSS classes.

jsx
function ModifiersExample() {
  const style = {
    padding: "16px",
    backgroundColor: "blue",
    color: "white",
  };

  return <div style={style}>Hello, World!</div>;
}
SwiftUI
swift
struct ModifiersExample: View {
    var body: some View {
        Text("Hello, World!")
            .padding(EdgeInsets(top: 16, leading: 16, bottom: 16, trailing: 16))
            .background(Color.blue)
    }
}
Jetpack Compose
kotlin
@Composable
fun ModifiersExample() {
    Text(
        "Hello, World!",
        modifier = Modifier
            .padding(16.dp)
            .background(Color.Blue)
    )
}
State
State management refers to the process of handling and updating the internal state of components, often in response to user interactions or other events.
React
jsx
import { useState } from "react";

function Counter() {
  const [count, setCount] = useState(0);

  return (
    <button onClick={() => setCount(count + 1)}>
        Count: {count}
    </button>
  );
}
SwiftUI
swift
struct Counter: View {
    @State private var count = 0

    var body: some View {
        Button(action: {
            count += 1
        }) {
            Text("Count: \(count)")
        }
    }
}
Jetpack Compose
kotlin
@Composable
fun Counter() {
    var count by remember { mutableStateOf(0) }

    Button(onClick = { count = count + 1 }) {
        Text("Count: $count")
    }
}
Scoped Data Propagation
Scoped Data Propagation is a technique that involves passing data across multiple levels of a component subtree without having to explicitly pass it through every intermediate component. It helps reduce the complexity of prop drilling and allows for a more efficient way of sharing data in a specific scope.
React
jsx
import { createContext, useContext } from "react";

const CustomContext = createContext();

function Parent({ data }) {
  return (
    <CustomContext.Provider value={data}>
      <Intermediate />
    </CustomContext.Provider>
  );
}

function Intermediate() {
  return <Child />;
}

function Child() {
  const data = useContext(CustomContext);
  return <p>Received data: {data}</p>;
}

// Usage
<Parent data="Some data" />;
SwiftUI
swift
struct CustomEnvironmentKey: EnvironmentKey {
    static let defaultValue: String = ""
}

extension EnvironmentValues {
    var customData: String {
        get { self[CustomEnvironmentKey.self] }
        set { self[CustomEnvironmentKey.self] = newValue }
    }
}

struct Parent: View {
    let data: String

    var body: some View {
        Intermediate().environment(\.customData, data)
    }
}

struct Intermediate: View {
    var body: some View {
        Child()
    }
}

struct Child: View {
    @Environment(\.customData) private var data

    var body: some View {
        Text("Received data: \(data)")
    }
}

// Usage
Parent(data: "Some data")
Jetpack Compose
kotlin
val CustomLocal = compositionLocalOf<String> { "Default data" }

@Composable
fun Parent(data: String) {
    CompositionLocalProvider(CustomLocal provides data) {
        Intermediate()
    }
}

@Composable
fun Intermediate() {
    Child()
}

@Composable
fun Child() {
    val data = CustomLocal.current
    Text("Received data: $data")
}

// Usage
Parent(data = "Some data")
Side Effects
A side effect involves executing code that can have external consequences or perform operations that are not directly related to rendering the UI, such as making network requests or updating external data sources.
React
jsx
import { useEffect } from "react";

function SideEffectOnLoadComponent() {
  useEffect(() => {
    // Perform side effect, e.g. fetch data, update external data source
  }, []);

  // Other UI components
  return <div />;
}
SwiftUI
swift
struct SideEffectOnLoadComponent: View {
    @State private var hasPerformedSideEffect = false

    var body: some View {
        if !hasPerformedSideEffect {
            DispatchQueue.main.async {
                // Perform side effect, e.g. fetch data, update external data source
                hasPerformedSideEffect = true
            }
        }

        // Other UI components
        Text("Hello, World!")
    }
}
Jetpack Compose
kotlin
@Composable
fun SideEffectOnLoadComponent() {
    LaunchedEffect(Unit) {
        // Perform side effect, e.g. fetch data, update external data source
    }

    // Other UI components
    Text("Hello, World!")
}

Frequently Asked Questions About React vs SwiftUI vs Jetpack Compose

Which is better for beginners, React or SwiftUI or Jetpack Compose?

Let's analyze the learning curve and requirements for each framework in 2025:

React (4/5)

React's component-based architecture and extensive ecosystem make it accessible for beginners. While concepts like hooks and virtual DOM require time to master, the large community and abundance of learning resources help overcome challenges. TypeScript adoption adds type safety but increases the initial learning curve.

Learning Path:
  1. Learn modern JavaScript/TypeScript
  2. Understand React components and JSX
  3. Master hooks and state management
  4. Learn component lifecycle and effects
  5. Practice React patterns and best practices
Key Prerequisites:
  • JavaScript/TypeScript
  • HTML/CSS
  • npm/yarn

Time to Productivity: 2-3 months for web developers, 3-4 months for beginners

SwiftUI (4/5)

SwiftUI offers an intuitive approach for iOS development with excellent documentation and powerful preview features. While it requires understanding Swift and iOS concepts, its declarative syntax and strong type system help catch errors early and make the development process more predictable.

Learning Path:
  1. Master Swift basics (especially protocols and property wrappers)
  2. Understand iOS app architecture
  3. Learn SwiftUI view hierarchy and data flow
  4. Practice with property wrappers and state management
  5. Explore SwiftUI's animation system
Key Prerequisites:
  • Swift
  • iOS development concepts
  • Xcode

Time to Productivity: 2-3 months for iOS developers, 4-5 months for beginners

Jetpack Compose (3/5)

Jetpack Compose has a moderate learning curve that requires understanding of Kotlin and Android fundamentals. Its functional programming approach and declarative syntax can be challenging for developers coming from imperative XML layouts, but the excellent tooling and preview system make the learning process smoother.

Learning Path:
  1. Learn Kotlin fundamentals (especially lambdas and higher-order functions)
  2. Understand Android Activity/Fragment lifecycle
  3. Master Compose basics (composables, state, side effects)
  4. Learn Material Design components and theming
  5. Practice state management and composition patterns
Key Prerequisites:
  • Kotlin
  • Android basics
  • Gradle build system

Time to Productivity: 2-3 months for Android developers, 4-6 months for beginners

Recommendation

Based on the analysis, React offers the most approachable learning curve. However, your choice should depend on:

  • Your existing programming background (JavaScript/TypeScript, Swift, Kotlin)
  • Target platform requirements (Cross-platform, iOS, Android)
  • Available learning time (2-3 months for web developers, 3-4 months for beginners for React)
  • Long-term career goals in mobile/web development

How does the performance of React compare to SwiftUI in real-world applications?

Let's analyze the real-world performance characteristics of React and SwiftUI based on benchmarks and practical experience:

React Performance Profile

Strengths
  • Virtual DOM optimization

    Efficient diffing algorithm minimizes actual DOM updates, improving performance.

  • Code splitting

    Built-in support for code splitting and lazy loading of components.

  • Concurrent rendering

    React 18's concurrent features allow for prioritized rendering and better user experience.

Areas for Optimization
  • ! DOM operations overhead

    Multiple DOM operations can still impact performance in complex applications.

  • ! Bundle size concerns

    Large dependency trees can lead to significant bundle sizes.

SwiftUI Performance Profile

Strengths
  • Efficient diffing algorithm

    Uses a sophisticated diffing algorithm to minimize view updates and maintain smooth performance.

  • Native platform optimization

    Direct integration with Apple's rendering engine provides excellent performance on iOS devices.

  • Automatic memory management

    Swift's ARC (Automatic Reference Counting) ensures efficient memory usage.

Areas for Optimization
  • ! List performance issues

    Complex lists with dynamic content can experience performance degradation.

  • ! State propagation overhead

    Deep view hierarchies with frequent state updates can impact performance.

Performance Optimization Tips

React
  • Implement React.memo() for expensive computations
  • Use useMemo and useCallback hooks appropriately
  • Leverage Code Splitting with React.lazy()
  • Profile with React DevTools and Lighthouse
SwiftUI
  • Use @StateObject for expensive objects that need to persist
  • Implement lazy loading with LazyVStack and LazyHStack
  • Leverage SwiftUI's built-in performance tools
  • Profile with Instruments to identify bottlenecks

What are the key architectural differences between React and SwiftUI and Jetpack Compose?

Here are the key differences between React and SwiftUI and Jetpack Compose:

Feature ReactSwiftUIJetpack Compose
Paradigm Declarative UI library with a component-based approachDeclarative UI framework with a protocol-oriented approachDeclarative UI toolkit with a functional programming approach
Target Platform Web (with React Native for mobile)Apple platforms (iOS, macOS, watchOS, tvOS)Android (with experimental desktop support)
Language JavaScript/TypeScriptSwiftKotlin
Component Model Function components with hooks or class componentsView protocol conforming structsComposable functions
State Management useState, useReducer, and third-party solutions like ReduxProperty wrappers (@State, @Binding, @ObservedObject)State hoisting with remember and mutableStateOf
Ecosystem Vast ecosystem with many libraries and toolsTightly integrated with Apple's development ecosystemIntegrated with Android ecosystem and Kotlin coroutines

The choice between these frameworks often depends on your target platform, existing expertise, and specific project requirements. React and SwiftUI and Jetpack Compose each have their strengths in different contexts.

What are the job market trends for React vs SwiftUI vs Jetpack Compose in 2025?

If you're considering a career move in 2025, here's how these frameworks compare in terms of job prospects:

React

  • Current Demand: Very high demand across web, mobile (React Native), and desktop
  • Growth Trajectory: Mature but still growing with continuous innovation
  • Notable Companies: Meta, Netflix, Airbnb, Dropbox

SwiftUI

  • Current Demand: Increasing as iOS apps adopt the newer framework
  • Growth Trajectory: Steady growth as Apple continues to enhance capabilities
  • Notable Companies: Apple, Uber, Lyft, Airbnb

Jetpack Compose

  • Current Demand: Growing rapidly as more Android apps transition from XML layouts
  • Growth Trajectory: Strong upward trend as Google pushes it as the future of Android UI
  • Notable Companies: Google, Twitter, Square, Airbnb

For mobile development, specializing in both Jetpack Compose and SwiftUI makes you versatile across the two major mobile platforms, though each individually pairs well with their platform-specific knowledge.

Can React and SwiftUI and Jetpack Compose be used together in the same project?

Understanding how React and SwiftUI and Jetpack Compose can work together:

React + SwiftUI

React Native can integrate with SwiftUI through native modules, allowing you to use SwiftUI components within a React Native iOS app.

React + Jetpack Compose

React Native can integrate with Jetpack Compose through native modules, allowing you to use Compose UI components within a React Native Android app.

SwiftUI + Jetpack Compose

SwiftUI and Jetpack Compose cannot be directly integrated as they target different platforms (iOS vs. Android). However, you can share business logic between them using Kotlin Multiplatform.

Using multiple frameworks: While it's technically possible to use React, SwiftUI, Jetpack Compose in a single project ecosystem, this adds complexity. It's generally better to choose the right tool for each platform and maintain consistency within that platform.

Web + Mobile Strategy: A common approach is to use React for your web application, while using SwiftUI or Jetpack Compose for mobile apps. You can share business logic and API calls between them, but the UI layer would be implemented separately for each platform.

Can I share code between Jetpack Compose and SwiftUI?

Yes, you can share code between Jetpack Compose and SwiftUI applications using Kotlin Multiplatform (KMP). Here's how:

  • Shared Business Logic: Use KMP to write your data models, repositories, and business logic once in Kotlin and use it on both platforms.
  • Platform-Specific UI: Write your UI separately with Jetpack Compose for Android and SwiftUI for iOS, but have them connect to the shared KMP code.
  • Networking & Storage: Libraries like Ktor (networking) and SQLDelight (database) work well with KMP to share these layers across platforms.

How does Jetpack Compose compare to traditional Android XML layouts?

Jetpack Compose represents a significant shift from traditional Android XML layouts:

Traditional XML Layouts

  • Declarative XML with imperative Java/Kotlin manipulation
  • View hierarchy with expensive findViewById() calls
  • Complex layouts like ConstraintLayout for performance
  • Separate files for layouts, styles, and logic
  • Many boilerplate adapters and view holders
  • Slow layout inflation process

Jetpack Compose

  • Fully declarative Kotlin code for UI
  • No view hierarchy or findViewById()
  • Layout composables handle optimization automatically
  • UI, styling, and logic in one place
  • Simple list creation with LazyColumn/LazyRow
  • No layout inflation, faster rendering

Compose brings significant advantages in:

  • Code reduction: Much less boilerplate code compared to XML
  • State management: Built-in state handling with react-like patterns
  • Preview: @Preview annotation for seeing UI changes without deploying
  • Animation: Simplified animations with type-safe builders
  • Testing: Better testability without complex UI testing setups

Migration can be gradual - Compose can be adopted incrementally within existing XML-based apps through the ComposeView component.