Compare Declarative Frameworks

Choose up-to 3 frameworks and learn how they compare to each other.
Framework Logo
Framework Logo
Framework Logo
Framework Logo
Framework Logo
Creating a new Component
Components are the reusable building blocks of your application. They are the most basic UI elements and can be used to build more complex components.
SwiftUI
swift
struct MyComponent: View {
    var displayString: String
    var body: some View {
        Text(displayString)
    }
}
React
jsx
function MyComponent(props) {
  return <div>{props.displayString}</div>;
}
Flutter
dart
class MyComponent extends StatelessWidget {
  final String displayString;

  MyComponent({required this.displayString});

  
  Widget build(BuildContext context) {
    return Text(displayString);
  }
}
Conditional Rendering
Conditional rendering is a technique used to display different UI components or content based on certain conditions, such as the value of a variable or the outcome of a boolean expression.
SwiftUI
swift
struct ConditionalComponent: View {
    let condition: Bool

    var body: some View {
        Group {
            if condition {
                Text("Condition is true")
            } else {
                Text("Condition is false")
            }
        }
    }
}

// Usage
ConditionalComponent(condition: true)
React
jsx
function ConditionalComponent({ condition }) {
  return (
    <>
      {condition ? (
        <p>Condition is true</p>
      ) : (
        <p>Condition is false</p>
      )}
    </>
  );
}

// Usage
<ConditionalComponent condition={true} />;
Flutter
dart
class ConditionalComponent extends StatelessWidget {
  final bool condition;

  ConditionalComponent({required this.condition});

  
  Widget build(BuildContext context) {
    if(condition) {
      return Text("Condition is true");
    } else {
      return Text("Condition is false");
    }
  }
}

// Usage
ConditionalComponent(condition: true)
Prop/Parameter Drilling
Prop/Parameter drilling is a technique where data is passed through multiple layers of components in the component hierarchy, often from a parent component to a deeply nested child component, via props or parameters.
SwiftUI
swift
struct Parent: View {
    let data: String

    var body: some View {
        IntermediateComponent(data: data)
    }
}

struct IntermediateComponent: View {
    let data: String

    var body: some View {
        ChildComponent(data: data)
    }
}

struct ChildComponent: View {
    let data: String

    var body: some View {
        Text("Received data: \(data)")
    }
}

// Usage
Parent(data: "Some data")
React
jsx
function Parent({ data }) {
  return <IntermediateComponent data={data} />;
}

function IntermediateComponent({ data }) {
  return <ChildComponent data={data} />;
}

function ChildComponent({ data }) {
  return <p>Received data: {data}</p>;
}

// Usage
<Parent data="Some data" />;
Flutter
dart
class Parent extends StatelessWidget {
  final String data;

  Parent({required this.data});

  
  Widget build(BuildContext context) {
    return IntermediateComponent(data: data);
  }
}

class IntermediateComponent extends StatelessWidget {
  final String data;

  IntermediateComponent({required this.data});

  
  Widget build(BuildContext context) {
    return ChildComponent(data: data);
  }
}

class ChildComponent extends StatelessWidget {
  final String data;

  ChildComponent({required this.data});

  
  Widget build(BuildContext context) {
    return Text("Received data: $data");
  }
}

// Usage
Parent(data: "Some data")
Responding to events
Responding to events involves handling user interactions, such as button clicks or text input changes, and updating the component's state or triggering side effects accordingly.
SwiftUI
swift
struct ClickableComponent: View {
    @State private var clicked = false

    var body: some View {
        Button(action: {
            clicked = true
        }) {
            Text(clicked ? "Button clicked" : "Click me")
        }
    }
}
React
jsx
import { useState } from "react";

function ClickableComponent() {
  const [clicked, setClicked] = useState(false);

  return (
    <button onClick={() => setClicked(true)}>
      {clicked ? "Button clicked" : "Click me"}
    </button>
  );
}
Flutter
dart
class ClickableComponent extends StatefulWidget {
  
  _ClickableComponentState createState() => _ClickableComponentState();
}

class _ClickableComponentState extends State<ClickableComponent> {
  bool clicked = false;

  
  Widget build(BuildContext context) {
    return RaisedButton(
      onPressed: () => setState(() => clicked = true),
      child: Text(clicked ? "Button clicked" : "Click me"),
    );
  }
}
Handing user input
Handling user input involves capturing and processing user interactions with input fields, such as text fields, sliders, or checkboxes, and updating the component's state or triggering side effects based on the input.
SwiftUI
swift
struct TextInputComponent: View {
    @State private var text = ""

    var body: some View {
        TextField("Enter text", text: $text)
    }
}
React
jsx
function TextInputComponent() {
  const [text, setText] = useState("");

  return (
    <input
      type="text"
      value={text}
      onChange={(e) => setText(e.target.value)}
      placeholder="Enter text"
    />
  );
}
Flutter
dart
class TextInputComponent extends StatefulWidget {
  const TextInputComponent({super.key});

  
  State<TextInputComponent> createState() => _TextInputComponentState();
}

class _TextInputComponentState extends State<TextInputComponent> {
  late final _controller = TextEditingController(text: "");

  
  void dispose() {
    _controller.dispose();
    super.dispose();
  }

  
  Widget build(BuildContext context) {
    return TextField(
      controller: _controller,
      decoration: const InputDecoration(labelText: "Enter text"),
    );
  }
}
Previewing a Component
Creating a preview of a component involves displaying a visual representation of the component in the development environment to help with the design and layout process.
SwiftUI
swift
struct ExampleComponent: View {
    var body: some View {
        Text("Hello, World!")
    }
}

struct ExampleComponent_Previews: PreviewProvider {
    static var previews: some View {
        ExampleComponent()
    }
}
React

React doesn't have a built-in preview feature. However, you can use a tool like Storybook to create previews for your components in a separate development environment.

Flutter

Flutter doesn't have a built-in preview feature. You can, however, create a separate app or run your app in an emulator or on a device to view your components. Additionally, you can use the Flutter Studio web-based tool to create and preview Flutter widgets in a browser.

Lists & Looping
Lists and looping involve rendering a dynamic number of components based on the length of a list or array, iterating over the list, and generating a UI component for each item.
SwiftUI
swift
struct ListComponent: View {
    let items: [String]

    var body: some View {
        List(items, id: \.self) { item in
            Text(item)
        }
    }
}

// Usage
let items = ["Item 1", "Item 2", "Item 3"]
ListComponent(items: items)
React
jsx
function ListComponent({ items }) {
  return (
    <ul>
      {items.map((item) => (
        <li key={item}>{item}</li>
      ))}
    </ul>
  );
}

// Usage
const items = ["Item 1", "Item 2", "Item 3"];
<ListComponent items={items} />;
Flutter
dart
class ListComponent extends StatelessWidget {
  final List<String> items;

  ListComponent({required this.items});

  
  Widget build(BuildContext context) {
    return ListView.builder(
      itemCount: items.length,
      itemBuilder: (context, index) {
        return ListTile(title: Text(items[index]));
      },
    );
  }
}

// Usage
final items = ["Item 1", "Item 2", "Item 3"];
ListComponent(items: items)
List item keys
List Item Keys are unique identifiers assigned to each list item in declarative UI frameworks to help manage and update list elements efficiently. Using List Item Keys enables the framework to optimize the rendering process, minimizing unnecessary updates and improving overall performance.
SwiftUI
swift
struct Person: Identifiable {
    let name: String
    let age: Int
    let id: String
}

struct ItemKeysExample: View {
    let items: [Person]

    var body: some View {
        List(items) { person in
            Text("Name: \(person.name), Age: \(person.age)")
        }
    }
}

// Usage
ItemKeysExample(items: [Person(name: "John", age: 30, id: "1"), Person(name: "Jane", age: 28, id: "2"), Person(name: "Bob", age: 25, id: "3")])
React
jsx
function ItemKeysExample({ items }) {
  return (
    <ul>
      {items.map((person) => (
        <li key={person.id}>
          Name: {person.name}, Age: {person.age}
        </li>
      ))}
    </ul>
  );
}

// Usage
<ItemKeysExample
  items={[
    { name: "John", age: 30, id: "1" },
    { name: "Jane", age: 28, id: "2" },
    { name: "Bob", age: 25, id: "3" },
  ]}
/>;
Flutter
dart
class Person {
  final String name;
  final int age;
  final String id;

  Person({required this.name, required this.age, required this.id});
}

class ItemKeysExample extends StatelessWidget {
  final List<Person> items;

  ItemKeysExample({required this.items});

  
  Widget build(BuildContext context) {
    return ListView.builder(
      itemCount: items.length,
      itemBuilder: (context, index) {
        final person = items[index];
        return ListTile(
          key: Key(person.id),
          title: Text('Name: ${person.name}, Age: ${person.age}'),
        );
      },
    );
  }
}

// Usage
ItemKeysExample(items: [Person(name: 'John', age: 30, id: '1'), Person(name: 'Jane', age: 28, id: '2'), Person(name: 'Bob', age: 25, id: '3')])
Slot APIs
Slot APIs refer to a technique where components have customizable parts or 'slots' that can be filled with content when the component is being used. This allows for greater reusability and flexibility in composing user interfaces. The content that fills these slots can be other components or simple UI elements like text or images.
SwiftUI
swift
struct Parent<Header: View, Content: View>: View {
    let header: Header
    let content: Content

    var body: some View {
        VStack {
            header
            content
        }
    }
}

// Usage
Parent(
    header: Text("Header"),
    content: Child()
)

struct Child: View {
    var body: some View {
        Text("Child Content")
    }
}
React
jsx
function Parent({ header, content }) {
  return (
    <div>
      {header}
      {content}
    </div>
  );
}

// Usage
<Parent header={<h1>Header</h1>} content={<Child />} />;

function Child() {
  return <p>Child Content</p>;
}
Flutter
dart
class Parent extends StatelessWidget {
  final Widget header;
  final Widget content;

  Parent({required this.header, required this.content});

  
  Widget build(BuildContext context) {
    return Column(
      children: [
        header,
        content,
      ],
    );
  }
}

// Usage
Parent(
  header: Text("Header"),
  content: Child(),
)

class Child extends StatelessWidget {
  
  Widget build(BuildContext context) {
    return Text("Child Content");
  }
}
Modifiers
Modifiers are used to adjust or configure the UI elements' appearance or behavior in a declarative UI framework.
SwiftUI
swift
struct ModifiersExample: View {
    var body: some View {
        Text("Hello, World!")
            .padding(EdgeInsets(top: 16, leading: 16, bottom: 16, trailing: 16))
            .background(Color.blue)
    }
}
React

React doesn't have a direct analog to modifiers in Jetpack Compose or SwiftUI. Instead, you can use inline styles or CSS classes.

jsx
function ModifiersExample() {
  const style = {
    padding: "16px",
    backgroundColor: "blue",
    color: "white",
  };

  return <div style={style}>Hello, World!</div>;
}
Flutter

In Flutter, you can wrap widgets with other widgets to achieve similar effects.

dart
class ModifiersExample extends StatelessWidget {
  
  Widget build(BuildContext context) {
    return Container(
      padding: EdgeInsets.all(16.0),
      color: Colors.blue,
      child: Text('Hello, World!', style: TextStyle(color: Colors.white)),
    );
  }
}
State
State management refers to the process of handling and updating the internal state of components, often in response to user interactions or other events.
SwiftUI
swift
struct Counter: View {
    @State private var count = 0

    var body: some View {
        Button(action: {
            count += 1
        }) {
            Text("Count: \(count)")
        }
    }
}
React
jsx
import { useState } from "react";

function Counter() {
  const [count, setCount] = useState(0);

  return (
    <button onClick={() => setCount(count + 1)}>
        Count: {count}
    </button>
  );
}
Flutter
dart
class Counter extends StatefulWidget {
  
  _CounterState createState() => _CounterState();
}

class _CounterState extends State<Counter> {
  int count = 0;

  
  Widget build(BuildContext context) {
    return RaisedButton(
      onPressed: () => setState(() => count += 1),
      child: Text("Count: $count"),
    );
  }
}
Scoped Data Propagation
Scoped Data Propagation is a technique that involves passing data across multiple levels of a component subtree without having to explicitly pass it through every intermediate component. It helps reduce the complexity of prop drilling and allows for a more efficient way of sharing data in a specific scope.
SwiftUI
swift
struct CustomEnvironmentKey: EnvironmentKey {
    static let defaultValue: String = ""
}

extension EnvironmentValues {
    var customData: String {
        get { self[CustomEnvironmentKey.self] }
        set { self[CustomEnvironmentKey.self] = newValue }
    }
}

struct Parent: View {
    let data: String

    var body: some View {
        Intermediate().environment(\.customData, data)
    }
}

struct Intermediate: View {
    var body: some View {
        Child()
    }
}

struct Child: View {
    @Environment(\.customData) private var data

    var body: some View {
        Text("Received data: \(data)")
    }
}

// Usage
Parent(data: "Some data")
React
jsx
import { createContext, useContext } from "react";

const CustomContext = createContext();

function Parent({ data }) {
  return (
    <CustomContext.Provider value={data}>
      <Intermediate />
    </CustomContext.Provider>
  );
}

function Intermediate() {
  return <Child />;
}

function Child() {
  const data = useContext(CustomContext);
  return <p>Received data: {data}</p>;
}

// Usage
<Parent data="Some data" />;
Flutter
dart
class CustomInheritedWidget extends InheritedWidget {
  final String data;

  CustomInheritedWidget({required this.data, required Widget child})
      : super(child: child);

  
  bool updateShouldNotify(CustomInheritedWidget oldWidget) {
    return oldWidget.data != data;
  }

  static CustomInheritedWidget of(BuildContext context) {
    return context.dependOnInheritedWidgetOfExactType<CustomInheritedWidget>()!;
  }
}

class Parent extends StatelessWidget {
  final String data;

  Parent({required this.data});

  
  Widget build(BuildContext context) {
    return CustomInheritedWidget(
      data: data,
      child: Intermediate(),
    );
  }
}

class Intermediate extends StatelessWidget {
  
  Widget build(BuildContext context) {
    return Child();
  }
}

class Child extends StatelessWidget {
  
  Widget build(BuildContext context) {
    final data = CustomInheritedWidget.of(context).data;
    return Text("Received data: $data");
  }
}

// Usage
Parent(data: "Some data")
Side Effects
A side effect involves executing code that can have external consequences or perform operations that are not directly related to rendering the UI, such as making network requests or updating external data sources.
SwiftUI
swift
struct SideEffectOnLoadComponent: View {
    @State private var hasPerformedSideEffect = false

    var body: some View {
        if !hasPerformedSideEffect {
            DispatchQueue.main.async {
                // Perform side effect, e.g. fetch data, update external data source
                hasPerformedSideEffect = true
            }
        }

        // Other UI components
        Text("Hello, World!")
    }
}
React
jsx
import { useEffect } from "react";

function SideEffectOnLoadComponent() {
  useEffect(() => {
    // Perform side effect, e.g. fetch data, update external data source
  }, []);

  // Other UI components
  return <div />;
}
Flutter
dart
class SideEffectOnLoadComponent extends StatefulWidget {
  
  _SideEffectOnLoadComponentState createState() => _SideEffectOnLoadComponentState();
}

class _SideEffectOnLoadComponentState extends State<SideEffectOnLoadComponent> {
  
  void initState() {
    super.initState();
    // Perform side effect, e.g. fetch data, update external data source
  }

  
  Widget build(BuildContext context) {
    // Other UI components
    return Container();
  }
}

Frequently Asked Questions About SwiftUI vs React vs Flutter

Which is better for beginners, SwiftUI or React or Flutter?

Let's analyze the learning curve and requirements for each framework in 2025:

SwiftUI (4/5)

SwiftUI offers an intuitive approach for iOS development with excellent documentation and powerful preview features. While it requires understanding Swift and iOS concepts, its declarative syntax and strong type system help catch errors early and make the development process more predictable.

Learning Path:
  1. Master Swift basics (especially protocols and property wrappers)
  2. Understand iOS app architecture
  3. Learn SwiftUI view hierarchy and data flow
  4. Practice with property wrappers and state management
  5. Explore SwiftUI's animation system
Key Prerequisites:
  • Swift
  • iOS development concepts
  • Xcode

Time to Productivity: 2-3 months for iOS developers, 4-5 months for beginners

React (4/5)

React's component-based architecture and extensive ecosystem make it accessible for beginners. While concepts like hooks and virtual DOM require time to master, the large community and abundance of learning resources help overcome challenges. TypeScript adoption adds type safety but increases the initial learning curve.

Learning Path:
  1. Learn modern JavaScript/TypeScript
  2. Understand React components and JSX
  3. Master hooks and state management
  4. Learn component lifecycle and effects
  5. Practice React patterns and best practices
Key Prerequisites:
  • JavaScript/TypeScript
  • HTML/CSS
  • npm/yarn

Time to Productivity: 2-3 months for web developers, 3-4 months for beginners

Flutter (3/5)

Flutter requires learning Dart, which may be unfamiliar to many developers. However, its comprehensive documentation, hot reload feature, and widget-based architecture make the learning process systematic. The consistent behavior across platforms reduces platform-specific complexity.

Learning Path:
  1. Learn Dart programming language
  2. Understand Flutter widget system
  3. Master state management approaches
  4. Learn platform integration techniques
  5. Practice responsive design patterns
Key Prerequisites:
  • Dart
  • Basic programming concepts
  • Mobile UI principles

Time to Productivity: 3-4 months for mobile developers, 4-6 months for beginners

Recommendation

Based on the analysis, SwiftUI offers the most approachable learning curve. However, your choice should depend on:

  • Your existing programming background (Swift, JavaScript/TypeScript, Dart)
  • Target platform requirements (iOS, Cross-platform, Cross-platform)
  • Available learning time (2-3 months for iOS developers, 4-5 months for beginners for SwiftUI)
  • Long-term career goals in mobile/web development

How does the performance of SwiftUI compare to React in real-world applications?

Let's analyze the real-world performance characteristics of SwiftUI and React based on benchmarks and practical experience:

SwiftUI Performance Profile

Strengths
  • Efficient diffing algorithm

    Uses a sophisticated diffing algorithm to minimize view updates and maintain smooth performance.

  • Native platform optimization

    Direct integration with Apple's rendering engine provides excellent performance on iOS devices.

  • Automatic memory management

    Swift's ARC (Automatic Reference Counting) ensures efficient memory usage.

Areas for Optimization
  • ! List performance issues

    Complex lists with dynamic content can experience performance degradation.

  • ! State propagation overhead

    Deep view hierarchies with frequent state updates can impact performance.

React Performance Profile

Strengths
  • Virtual DOM optimization

    Efficient diffing algorithm minimizes actual DOM updates, improving performance.

  • Code splitting

    Built-in support for code splitting and lazy loading of components.

  • Concurrent rendering

    React 18's concurrent features allow for prioritized rendering and better user experience.

Areas for Optimization
  • ! DOM operations overhead

    Multiple DOM operations can still impact performance in complex applications.

  • ! Bundle size concerns

    Large dependency trees can lead to significant bundle sizes.

Native vs Web Performance

SwiftUI, being a native framework, generally provides better performance for:

  • Complex animations and transitions
  • Heavy computational tasks
  • Memory-intensive operations
  • Access to platform-specific optimizations

However, React can still deliver excellent performance for most business applications, especially when following optimization best practices.

Performance Optimization Tips

SwiftUI
  • Use @StateObject for expensive objects that need to persist
  • Implement lazy loading with LazyVStack and LazyHStack
  • Leverage SwiftUI's built-in performance tools
  • Profile with Instruments to identify bottlenecks
React
  • Implement React.memo() for expensive computations
  • Use useMemo and useCallback hooks appropriately
  • Leverage Code Splitting with React.lazy()
  • Profile with React DevTools and Lighthouse

What are the key architectural differences between SwiftUI and React and Flutter?

Here are the key differences between SwiftUI and React and Flutter:

Feature SwiftUIReactFlutter
Paradigm Declarative UI framework with a protocol-oriented approachDeclarative UI library with a component-based approachDeclarative UI toolkit with a widget-based approach
Target Platform Apple platforms (iOS, macOS, watchOS, tvOS)Web (with React Native for mobile)Cross-platform (iOS, Android, web, desktop)
Language SwiftJavaScript/TypeScriptDart
Component Model View protocol conforming structsFunction components with hooks or class componentsWidget classes (stateless and stateful)
State Management Property wrappers (@State, @Binding, @ObservedObject)useState, useReducer, and third-party solutions like ReduxStatefulWidget with setState, or state management packages
Ecosystem Tightly integrated with Apple's development ecosystemVast ecosystem with many libraries and toolsGoogle-backed with a growing ecosystem of packages

The choice between these frameworks often depends on your target platform, existing expertise, and specific project requirements. SwiftUI and React and Flutter each have their strengths in different contexts.

What are the job market trends for SwiftUI vs React vs Flutter in 2025?

If you're considering a career move in 2025, here's how these frameworks compare in terms of job prospects:

SwiftUI

  • Current Demand: Increasing as iOS apps adopt the newer framework
  • Growth Trajectory: Steady growth as Apple continues to enhance capabilities
  • Notable Companies: Apple, Uber, Lyft, Airbnb

React

  • Current Demand: Very high demand across web, mobile (React Native), and desktop
  • Growth Trajectory: Mature but still growing with continuous innovation
  • Notable Companies: Meta, Netflix, Airbnb, Dropbox

Flutter

  • Current Demand: High demand for cross-platform development skills
  • Growth Trajectory: One of the fastest-growing mobile frameworks
  • Notable Companies: Google, Alibaba, BMW, eBay

Flutter offers the advantage of cross-platform skills, while native frameworks like SwiftUI may provide deeper platform integration. Many companies value developers who can work in both worlds.

Can SwiftUI and React and Flutter be used together in the same project?

Understanding how SwiftUI and React and Flutter can work together:

SwiftUI + React

React (via React Native) can use SwiftUI through native modules, though this is complex and not typically recommended.

SwiftUI + Flutter

SwiftUI can be integrated with Flutter through platform channels, allowing you to use native iOS functionality within a Flutter app.

React + Flutter

React and Flutter are separate frameworks. While both can be used in the same project, this is uncommon and complex.

Using multiple frameworks: While it's technically possible to use SwiftUI, React, Flutter in a single project ecosystem, this adds complexity. It's generally better to choose the right tool for each platform and maintain consistency within that platform.

Web + Mobile Strategy: A common approach is to use React for your web application, while using SwiftUI or Flutter for mobile apps. You can share business logic and API calls between them, but the UI layer would be implemented separately for each platform.

Is Flutter better than SwiftUI for app development?

The choice between Flutter and SwiftUI depends on your project requirements:

Aspect Flutter SwiftUI
Platform Support iOS, Android, Web, Windows, macOS, Linux iOS, macOS, watchOS, tvOS
Native Integration Good via platform channels, but not direct Excellent native platform integration
Performance Very good with custom rendering engine Excellent on target platform
Development Speed Fast with hot reload and single codebase Fast for its target platform
UI Consistency Same UI across all platforms Platform-specific UI with native feel

Choose Flutter if:

  • You need to support multiple platforms with one codebase
  • UI consistency across platforms is more important than native platform feel
  • You want to reduce development and maintenance costs
  • Your team can focus on learning one technology stack (Dart)

Choose SwiftUI if:

  • You're only targeting Apple platforms
  • Deep platform integration is critical for your app
  • You want the most native feel and performance
  • Your team already has expertise in Swift

Many companies use both approaches: Flutter for cross-platform features and SwiftUI for platform-specific features that require deeper integration.

Why does Flutter use Dart instead of a more common language?

Flutter's choice of Dart as its programming language offers several technical advantages:

  • Just-in-Time (JIT) compilation during development enables hot reload, allowing for quick iteration
  • Ahead-of-Time (AOT) compilation for releases creates high-performance native code
  • Non-blocking asynchronous programming through async/await and Future objects
  • Sound null safety helps eliminate null reference errors
  • Fast garbage collection optimized for UI construction patterns
  • Object-oriented with mixins for reusable code

While languages like JavaScript or Kotlin might have larger communities, Dart was specifically optimized for Flutter's needs in building reactive UIs and achieving native performance. Google has invested heavily in making Dart an excellent language for UI development.

Despite being less common, Dart is easy to learn for developers familiar with Java, JavaScript, or C#, with most developers becoming productive within a few weeks.