SUBSCRIBE NOW
avatar
I always learn something just by skimming it that makes me want to bookmark the issue now and dig deeper later
SUBSCRIBE NOW
avatar
Keep up the good work with the newsletter 💪 I really enjoy it
SUBSCRIBE NOW
avatar
Dispatch is a must read for Android devs today and my go-to for keeping up with all things Jetpack Compose
SUBSCRIBE NOW
avatar
Dispatch has been my go-to resource as it's packed with useful information while being fun at the same time
SUBSCRIBE NOW
avatar
The content is light, fun, and still useful. I especially appreciate the small tips that are in each issue
SUBSCRIBE NOW
avatar
I truly love this newsletter ❤️‍🔥 Spot on content and I know there's a lot of effort that goes behind it
SUBSCRIBE NOW
avatar
Thanks for taking the time and energy to do it so well
JetpackCompose.app's Newsletter
avatar
I always learn something just by skimming it that makes me want to bookmark the issue now and dig deeper later
JetpackCompose.app's Newsletter
avatar
Keep up the good work with the newsletter 💪 I really enjoy it
JetpackCompose.app's Newsletter
avatar
Dispatch is a must read for Android devs today and my go-to for keeping up with all things Jetpack Compose
JetpackCompose.app's Newsletter
avatar
Dispatch has been my go-to resource as it's packed with useful information while being fun at the same time
JetpackCompose.app's Newsletter
avatar
The content is light, fun, and still useful. I especially appreciate the small tips that are in each issue
JetpackCompose.app's Newsletter
avatar
I truly love this newsletter ❤️‍🔥 Spot on content and I know there's a lot of effort that goes behind it
JetpackCompose.app's Newsletter
avatar
Thanks for taking the time and energy to do it so well

Compare Declarative Frameworks

Choose up-to 3 frameworks and learn how they compare to each other.
Framework Logo
Framework Logo
Framework Logo
Framework Logo
Framework Logo
Creating a new Component
Components are the reusable building blocks of your application. They are the most basic UI elements and can be used to build more complex components.
Vue.js
javascript
<template>
  <div>{{ displayString }}</div>
</template>

<script setup>
import { defineProps } from 'vue';

const props = defineProps({
  displayString: String
});
</script>
React
jsx
function MyComponent(props) {
  return <div>{props.displayString}</div>;
}
Jetpack Compose
kotlin
@Composable
fun MyComponent(
    displayString: String
) {
    Text(displayString)
}
Conditional Rendering
Conditional rendering is a technique used to display different UI components or content based on certain conditions, such as the value of a variable or the outcome of a boolean expression.
Vue.js
javascript
<template>
  <p v-if="condition">Condition is true</p>
  <p v-else>Condition is false</p>
</template>

<script setup>
import { defineProps } from 'vue';

const props = defineProps({
  condition: Boolean
});
</script>
React
jsx
function ConditionalComponent({ condition }) {
  return (
    <>
      {condition ? (
        <p>Condition is true</p>
      ) : (
        <p>Condition is false</p>
      )}
    </>
  );
}

// Usage
<ConditionalComponent condition={true} />;
Jetpack Compose
kotlin
@Composable
fun ConditionalComponent(condition: Boolean) {
    if (condition) {
        Text("Condition is true")
    } else {
        Text("Condition is false")
    }
}

// Usage
ConditionalComponent(condition = true)
Prop/Parameter Drilling
Prop/Parameter drilling is a technique where data is passed through multiple layers of components in the component hierarchy, often from a parent component to a deeply nested child component, via props or parameters.
Vue.js
javascript
<template>
  <intermediate-component :data="data" />
</template>

<script setup>
import { defineProps } from 'vue';
import IntermediateComponent from './IntermediateComponent.vue';

const props = defineProps({
  data: String
});
</script>
React
jsx
function Parent({ data }) {
  return <IntermediateComponent data={data} />;
}

function IntermediateComponent({ data }) {
  return <ChildComponent data={data} />;
}

function ChildComponent({ data }) {
  return <p>Received data: {data}</p>;
}

// Usage
<Parent data="Some data" />;
Jetpack Compose
kotlin
@Composable
fun Parent(data: String) {
    IntermediateComponent(data = data)
}

@Composable
fun IntermediateComponent(data: String) {
    ChildComponent(data = data)
}

@Composable
fun ChildComponent(data: String) {
    Text("Received data: $data")
}

// Usage
Parent(data = "Some data")
Responding to events
Responding to events involves handling user interactions, such as button clicks or text input changes, and updating the component's state or triggering side effects accordingly.
Vue.js
javascript
<template>
  <button @click="setClicked">
    {{ clicked ? "Button clicked" : "Click me" }}
  </button>
</template>

<script setup>
import { ref } from 'vue';

const clicked = ref(false);

function setClicked() {
  clicked.value = true;
}
</script>
React
jsx
import { useState } from "react";

function ClickableComponent() {
  const [clicked, setClicked] = useState(false);

  return (
    <button onClick={() => setClicked(true)}>
      {clicked ? "Button clicked" : "Click me"}
    </button>
  );
}
Jetpack Compose
kotlin
@Composable
fun ClickableComponent() {
    var clicked by remember { mutableStateOf(false) }

    Button(onClick = { clicked = true }) {
        Text(if (clicked) "Button clicked" else "Click me")
    }
}
Handing user input
Handling user input involves capturing and processing user interactions with input fields, such as text fields, sliders, or checkboxes, and updating the component's state or triggering side effects based on the input.
Vue.js
javascript
<template>
  <input
    type="text"
    v-model="text"
    placeholder="Enter text"
  />
</template>

<script setup>
import { ref } from 'vue';

const text = ref('');
</script>
React
jsx
function TextInputComponent() {
  const [text, setText] = useState("");

  return (
    <input
      type="text"
      value={text}
      onChange={(e) => setText(e.target.value)}
      placeholder="Enter text"
    />
  );
}
Jetpack Compose
kotlin
@Composable
fun TextInputComponent() {
    var text by remember { mutableStateOf("") }

    TextField(
        value = text,
        onValueChange = { newText -> text = newText },
        label = { Text("Enter text") }
    )
}
Previewing a Component
Creating a preview of a component involves displaying a visual representation of the component in the development environment to help with the design and layout process.
Vue.js

Vue.js doesn't have a built-in preview feature. However, you can use a tool like Storybook to create previews for your components in a separate development environment.

React

React doesn't have a built-in preview feature. However, you can use a tool like Storybook to create previews for your components in a separate development environment.

Jetpack Compose
kotlin
@Composable
fun ExampleComponent() {
    Text("Hello, World!")
}

@Preview(showBackground = true)
@Composable
fun ExampleComponentPreview() {
    ExampleComponent()
}

Additionally, you can also use Showkase, an open source library by Airbnb that allows you to view themes preview functions in an auto-generated component browser that can be viewed on an Android device.

Lists & Looping
Lists and looping involve rendering a dynamic number of components based on the length of a list or array, iterating over the list, and generating a UI component for each item.
Vue.js
javascript
<template>
  <ul>
    <li v-for="item in items" :key="item">
      {{ item }}
    </li>
  </ul>
</template>

<script setup>
import { defineProps } from 'vue';

const props = defineProps({
  items: Array
});
</script>

<!-- Usage -->
<list-component :items="['Item 1', 'Item 2', 'Item 3']"></list-component>
React
jsx
function ListComponent({ items }) {
  return (
    <ul>
      {items.map((item) => (
        <li key={item}>{item}</li>
      ))}
    </ul>
  );
}

// Usage
const items = ["Item 1", "Item 2", "Item 3"];
<ListComponent items={items} />;
Jetpack Compose
kotlin
@Composable
fun ListComponent(items: List<String>) {
    LazyColumn {
        items(items) { item ->
            Text(item)
        }
    }
}

// Usage
val items = listOf("Item 1", "Item 2", "Item 3")
ListComponent(items = items)
List item keys
List Item Keys are unique identifiers assigned to each list item in declarative UI frameworks to help manage and update list elements efficiently. Using List Item Keys enables the framework to optimize the rendering process, minimizing unnecessary updates and improving overall performance.
Vue.js
javascript
<template>
  <ul>
    <li v-for="person in items" :key="person.id">
      Name: {{ person.name }}, Age: {{ person.age }}
    </li>
  </ul>
</template>

<script setup>
import { defineProps } from 'vue';

const props = defineProps({
  items: Array
});
</script>

<!-- Usage -->
<item-keys-example
  :items="[
    { name: 'John', age: 30, id: '1' },
    { name: 'Jane', age: 28, id: '2' },
    { name: 'Bob', age: 25, id: '3' }
  ]"
></item-keys-example>
React
jsx
function ItemKeysExample({ items }) {
  return (
    <ul>
      {items.map((person) => (
        <li key={person.id}>
          Name: {person.name}, Age: {person.age}
        </li>
      ))}
    </ul>
  );
}

// Usage
<ItemKeysExample
  items={[
    { name: "John", age: 30, id: "1" },
    { name: "Jane", age: 28, id: "2" },
    { name: "Bob", age: 25, id: "3" },
  ]}
/>;
Jetpack Compose
kotlin
data class Person(val name: String, val age: Int, val id: String)

@Composable
fun ItemKeysExample(items: List<Person>) {
    LazyColumn {
        items(items, key = { person -> person.id }) { person ->
            Text("Name: ${person.name}, Age: ${person.age}")
        }
    }
}
Slot APIs
Slot APIs refer to a technique where components have customizable parts or 'slots' that can be filled with content when the component is being used. This allows for greater reusability and flexibility in composing user interfaces. The content that fills these slots can be other components or simple UI elements like text or images.
Vue.js
javascript
// ParentComponent.vue
<template>
  <div>
    <slot name="header"></slot>
    <slot name="content"></slot>
  </div>
</template>

// ChildComponent.vue
<template>
  <p>Child Content</p>
</template>

// Usage
<parent-component>
  <template v-slot:header>
    <h1>Header</h1>
  </template>
  <template v-slot:content>
    <child />
  </template>
</parent-component>
React
jsx
function Parent({ header, content }) {
  return (
    <div>
      {header}
      {content}
    </div>
  );
}

// Usage
<Parent header={<h1>Header</h1>} content={<Child />} />;

function Child() {
  return <p>Child Content</p>;
}
Jetpack Compose
kotlin
@Composable
fun Parent(
    header: @Composable () -> Unit,
    content: @Composable () -> Unit
) {
    Column {
        header()
        content()
    }
}

// Usage
Parent(
    header = { Text("Header") },
    content = { Child() }
)

@Composable
fun Child() {
    Text("Child Content")
}
Modifiers
Modifiers are used to adjust or configure the UI elements' appearance or behavior in a declarative UI framework.
Vue.js

Vue.js doesn't have a direct analog to modifiers in Jetpack Compose or SwiftUI. Instead, you can use inline styles or CSS classes.

javascript
<template>
  <div :style="style">Hello, World!</div>
</template>

<script setup>
import { reactive } from 'vue';

const style = reactive({
  padding: '16px',
  backgroundColor: 'blue',
  color: 'white'
});
</script>
React

React doesn't have a direct analog to modifiers in Jetpack Compose or SwiftUI. Instead, you can use inline styles or CSS classes.

jsx
function ModifiersExample() {
  const style = {
    padding: "16px",
    backgroundColor: "blue",
    color: "white",
  };

  return <div style={style}>Hello, World!</div>;
}
Jetpack Compose
kotlin
@Composable
fun ModifiersExample() {
    Text(
        "Hello, World!",
        modifier = Modifier
            .padding(16.dp)
            .background(Color.Blue)
    )
}
State
State management refers to the process of handling and updating the internal state of components, often in response to user interactions or other events.
Vue.js
javascript
<template>
  <button @click="incrementCount">
    Count: {{ count }}
  </button>
</template>

<script setup>
import { ref } from 'vue';

const count = ref(0);

function incrementCount() {
  count.value++;
}
</script>
React
jsx
import { useState } from "react";

function Counter() {
  const [count, setCount] = useState(0);

  return (
    <button onClick={() => setCount(count + 1)}>
        Count: {count}
    </button>
  );
}
Jetpack Compose
kotlin
@Composable
fun Counter() {
    var count by remember { mutableStateOf(0) }

    Button(onClick = { count = count + 1 }) {
        Text("Count: $count")
    }
}
Scoped Data Propagation
Scoped Data Propagation is a technique that involves passing data across multiple levels of a component subtree without having to explicitly pass it through every intermediate component. It helps reduce the complexity of prop drilling and allows for a more efficient way of sharing data in a specific scope.
Vue.js
javascript
<!-- ParentComponent.vue -->
<template>
  <intermediate />
</template>

<script setup>
import { provide, ref } from 'vue';
import Intermediate from './IntermediateComponent.vue';

const data = ref('Some data');
provide('dataKey', data);
</script>

<!-- IntermediateComponent.vue -->
<template>
  <child />
</template>

<script setup>
import Child from './ChildComponent.vue';
</script>

<!-- ChildComponent.vue -->
<template>
  <p>Received data: {{ data }}</p>
</template>

<script setup>
import { inject } from 'vue';

const data = inject('dataKey');
</script>


<!-- Usage -->
<parent-component data="Some data"></parent-component>
React
jsx
import { createContext, useContext } from "react";

const CustomContext = createContext();

function Parent({ data }) {
  return (
    <CustomContext.Provider value={data}>
      <Intermediate />
    </CustomContext.Provider>
  );
}

function Intermediate() {
  return <Child />;
}

function Child() {
  const data = useContext(CustomContext);
  return <p>Received data: {data}</p>;
}

// Usage
<Parent data="Some data" />;
Jetpack Compose
kotlin
val CustomLocal = compositionLocalOf<String> { "Default data" }

@Composable
fun Parent(data: String) {
    CompositionLocalProvider(CustomLocal provides data) {
        Intermediate()
    }
}

@Composable
fun Intermediate() {
    Child()
}

@Composable
fun Child() {
    val data = CustomLocal.current
    Text("Received data: $data")
}

// Usage
Parent(data = "Some data")
Side Effects
A side effect involves executing code that can have external consequences or perform operations that are not directly related to rendering the UI, such as making network requests or updating external data sources.
Vue.js
javascript
<template>
  <div></div>
</template>

<script setup>
import { onMounted } from 'vue';

onMounted(() => {
  // Perform side effect here
});
</script>
React
jsx
import { useEffect } from "react";

function SideEffectOnLoadComponent() {
  useEffect(() => {
    // Perform side effect, e.g. fetch data, update external data source
  }, []);

  // Other UI components
  return <div />;
}
Jetpack Compose
kotlin
@Composable
fun SideEffectOnLoadComponent() {
    LaunchedEffect(Unit) {
        // Perform side effect, e.g. fetch data, update external data source
    }

    // Other UI components
    Text("Hello, World!")
}

Frequently Asked Questions About Vue.js vs React vs Jetpack Compose

Which is better for beginners, Vue.js or React or Jetpack Compose?

Let's analyze the learning curve and requirements for each framework in 2025:

Vue.js (5/5)

Vue.js is highly beginner-friendly with its progressive learning curve and clear documentation. Its template syntax feels natural to HTML developers, while the Composition API offers a powerful way to organize complex logic. The framework provides official solutions for common needs, reducing decision fatigue.

Learning Path:
  1. Learn Vue template syntax and directives
  2. Understand component system
  3. Master Composition API
  4. Learn Vue Router and state management
  5. Practice Vue best practices and patterns
Key Prerequisites:
  • HTML/CSS
  • JavaScript basics
  • npm/yarn

Time to Productivity: 1-2 months for web developers, 2-3 months for beginners

React (4/5)

React's component-based architecture and extensive ecosystem make it accessible for beginners. While concepts like hooks and virtual DOM require time to master, the large community and abundance of learning resources help overcome challenges. TypeScript adoption adds type safety but increases the initial learning curve.

Learning Path:
  1. Learn modern JavaScript/TypeScript
  2. Understand React components and JSX
  3. Master hooks and state management
  4. Learn component lifecycle and effects
  5. Practice React patterns and best practices
Key Prerequisites:
  • JavaScript/TypeScript
  • HTML/CSS
  • npm/yarn

Time to Productivity: 2-3 months for web developers, 3-4 months for beginners

Jetpack Compose (3/5)

Jetpack Compose has a moderate learning curve that requires understanding of Kotlin and Android fundamentals. Its functional programming approach and declarative syntax can be challenging for developers coming from imperative XML layouts, but the excellent tooling and preview system make the learning process smoother.

Learning Path:
  1. Learn Kotlin fundamentals (especially lambdas and higher-order functions)
  2. Understand Android Activity/Fragment lifecycle
  3. Master Compose basics (composables, state, side effects)
  4. Learn Material Design components and theming
  5. Practice state management and composition patterns
Key Prerequisites:
  • Kotlin
  • Android basics
  • Gradle build system

Time to Productivity: 2-3 months for Android developers, 4-6 months for beginners

Recommendation

Based on the analysis, Vue.js offers the most approachable learning curve. However, your choice should depend on:

  • Your existing programming background (HTML/CSS, JavaScript/TypeScript, Kotlin)
  • Target platform requirements (Cross-platform, Cross-platform, Android)
  • Available learning time (1-2 months for web developers, 2-3 months for beginners for Vue.js)
  • Long-term career goals in mobile/web development

How does the performance of Vue.js compare to React in real-world applications?

Let's analyze the real-world performance characteristics of Vue.js and React based on benchmarks and practical experience:

Vue.js Performance Profile

Strengths
  • Reactive system

    Fine-grained reactivity system that updates only affected components.

  • Virtual DOM efficiency

    Optimized virtual DOM implementation with static tree hoisting.

  • Template compilation

    Templates are compiled into highly optimized render functions.

Areas for Optimization
  • ! Complex reactivity overhead

    Deep reactive objects can have performance implications.

  • ! Mobile optimization

    May require additional optimization for mobile web performance.

React Performance Profile

Strengths
  • Virtual DOM optimization

    Efficient diffing algorithm minimizes actual DOM updates, improving performance.

  • Code splitting

    Built-in support for code splitting and lazy loading of components.

  • Concurrent rendering

    React 18's concurrent features allow for prioritized rendering and better user experience.

Areas for Optimization
  • ! DOM operations overhead

    Multiple DOM operations can still impact performance in complex applications.

  • ! Bundle size concerns

    Large dependency trees can lead to significant bundle sizes.

Performance Optimization Tips

Vue.js
  • Use v-show for frequently toggled content
  • Implement proper key usage in v-for directives
  • Leverage Vue's keep-alive component
  • Profile with Vue DevTools and Chrome Performance
React
  • Implement React.memo() for expensive computations
  • Use useMemo and useCallback hooks appropriately
  • Leverage Code Splitting with React.lazy()
  • Profile with React DevTools and Lighthouse

What are the key architectural differences between Vue.js and React and Jetpack Compose?

Here are the key differences between Vue.js and React and Jetpack Compose:

Feature Vue.jsReactJetpack Compose
Paradigm Progressive JavaScript framework with a template-based approachDeclarative UI library with a component-based approachDeclarative UI toolkit with a functional programming approach
Target Platform Web primarilyWeb (with React Native for mobile)Android (with experimental desktop support)
Language JavaScript/TypeScriptJavaScript/TypeScriptKotlin
Component Model Single-file components with template, script, and style sectionsFunction components with hooks or class componentsComposable functions
State Management Reactive data with Composition API or Options APIuseState, useReducer, and third-party solutions like ReduxState hoisting with remember and mutableStateOf
Ecosystem Growing ecosystem with official libraries for routing and stateVast ecosystem with many libraries and toolsIntegrated with Android ecosystem and Kotlin coroutines

The choice between these frameworks often depends on your target platform, existing expertise, and specific project requirements. Vue.js and React and Jetpack Compose each have their strengths in different contexts.

What are the job market trends for Vue.js vs React vs Jetpack Compose in 2025?

If you're considering a career move in 2025, here's how these frameworks compare in terms of job prospects:

Vue.js

  • Current Demand: Solid demand, particularly in certain markets like Asia
  • Growth Trajectory: Steady growth with strong community support
  • Notable Companies: Alibaba, GitLab, Grammarly, Nintendo

React

  • Current Demand: Very high demand across web, mobile (React Native), and desktop
  • Growth Trajectory: Mature but still growing with continuous innovation
  • Notable Companies: Meta, Netflix, Airbnb, Dropbox

Jetpack Compose

  • Current Demand: Growing rapidly as more Android apps transition from XML layouts
  • Growth Trajectory: Strong upward trend as Google pushes it as the future of Android UI
  • Notable Companies: Google, Twitter, Square, Airbnb

Between React and Vue.js, React currently has a larger job market, but Vue.js positions often have less competition. Both are excellent choices for web development careers.

Can Vue.js and React and Jetpack Compose be used together in the same project?

Understanding how Vue.js and React and Jetpack Compose can work together:

Vue.js + React

Vue.js and React can coexist in the same web application, though this is uncommon. Micro-frontends architecture might use both frameworks for different parts of a large application.

Vue.js + Jetpack Compose

There's no direct integration between Vue.js and Jetpack Compose as they target different platforms. You would typically build separate apps for web and Android.

React + Jetpack Compose

React Native can integrate with Jetpack Compose through native modules, allowing you to use Compose UI components within a React Native Android app.

Using multiple frameworks: While it's technically possible to use Vue.js, React, Jetpack Compose in a single project ecosystem, this adds complexity. It's generally better to choose the right tool for each platform and maintain consistency within that platform.

Web + Mobile Strategy: A common approach is to use Vue.js or React for your web application, while using Jetpack Compose for mobile apps. You can share business logic and API calls between them, but the UI layer would be implemented separately for each platform.

What are the key philosophical differences between React and Vue.js?

React and Vue.js have different design philosophies that affect how you build applications:

React Philosophy

  • JavaScript-centric: Uses JSX to mix HTML with JavaScript
  • Explicit: State updates require explicit calls
  • Functional: Embraces functional programming concepts
  • Community-driven: Most solutions come from community packages
  • Freedom: Minimal restrictions on how to structure your app

Vue.js Philosophy

  • Template-oriented: HTML templates with enhancements
  • Reactive: Automatic tracking of dependencies
  • Progressive: Can be adopted incrementally
  • Opinionated core: Official solutions for routing, state management
  • Structure: More guidance on application architecture

Neither approach is inherently better - React's flexibility works well for complex applications with experienced teams, while Vue's structure and approachability can accelerate development for smaller teams or those new to frontend development.

How does Jetpack Compose compare to traditional Android XML layouts?

Jetpack Compose represents a significant shift from traditional Android XML layouts:

Traditional XML Layouts

  • Declarative XML with imperative Java/Kotlin manipulation
  • View hierarchy with expensive findViewById() calls
  • Complex layouts like ConstraintLayout for performance
  • Separate files for layouts, styles, and logic
  • Many boilerplate adapters and view holders
  • Slow layout inflation process

Jetpack Compose

  • Fully declarative Kotlin code for UI
  • No view hierarchy or findViewById()
  • Layout composables handle optimization automatically
  • UI, styling, and logic in one place
  • Simple list creation with LazyColumn/LazyRow
  • No layout inflation, faster rendering

Compose brings significant advantages in:

  • Code reduction: Much less boilerplate code compared to XML
  • State management: Built-in state handling with react-like patterns
  • Preview: @Preview annotation for seeing UI changes without deploying
  • Animation: Simplified animations with type-safe builders
  • Testing: Better testability without complex UI testing setups

Migration can be gradual - Compose can be adopted incrementally within existing XML-based apps through the ComposeView component.